Certificate G59/3.

Engineering Recommendation

Manufacturer	N.V. Nederlandsche Apparatenfabriek "Nedap"
Address	Parallelweg 2, 7141 DC Groenlo, The Netherlands
Test house details	Bureau Veritas Consumer Products Services Germany GmbH
Test house address	Businesspark A96, 86842 Türkheim, Germany

Product type reference	PR50S / PR50SB / PR50SBi	PR37S / PR37SB / PR37SBi	PR30S / PR30SB
Max. AC power	5000W	3680W	3000W
Nominal AC power	5000W	3680W	3000W
Grid connection	Single phase	Single phase	Single phase

The results of the G59/3 test are summarized in this certificate.

N.V. Nederlandsche Apparatenfabriek "Nedap" declares that all products as stated above comply with the requirements defined in engineering recommendation G59/3. These settings cannot be changed by the installer, user or any other person without the use of a tool (password protected). The complete documentation can be viewed at N.V. Nederlandsche Apparatenfabriek "Nedap" after prior announcement.

Test Summary (for details see attached test report)

Power Quality

- » Harmonic
- » Voltage fluctuations and flicker
- » DC injection
- » Power factor

Protection

- » Frequency test
- » Voltage test
- » Loss of mains test
- » Frequency change test
- » Reconnection timer
- » Fault level contribution

Drawn up in	Groenlo, The Netherlands							
Date	ate January 28 th , 2015							
Name and position	W. Klunder, Managing Director Nedap Energy Systems							

love your energy

G59/3 - Appendix A13.1 Generation Unit Type Test Report

Type Tested Generating Unit (>16A per phase but ≤ 50 kW 3-phase or 17 kW 1-phase) All tests were performed on model PR30S provided with software version 6.0.0 unless stated otherwise. Tests on models PR30S and PR50S were considered representative for all PowerRouter models as listed under "Product type reference".

Power Qua 13.8.4.1 H	ality. Iarmonics Cur		Ρ			
Model PR						
-	per phase (rpp	o)			NV=MV*3.68/	rpp
	At 45-55% of rated output 1.49 kW		100% of rat kW	ted output 2.99		
Harmonic	Measured Value (MV) in Amps	Normalised Value (NV) in Amps	Measured Value (MV) in Amps	Normalised Value (NV) in Amps	Limit in BS EN 61000-3- 2 in Amps	Higher limit for odd harmonics 21 and above
2nd	0.049	0.060	0.050	0.061	1.080	
3rd	0.059	0.072	0.063	0.078	2.300	
4th	0.016	0.019	0.009	0.011	0.430	
5th	0.076	0.093	0.100	0.123	1.140	
5th	0.007	0.008	0.006	0.008	0.300	
7th	0.041	0.050	0.078	0.096	0.770	
8th	0.004	0.005	0.005	0.006	0.230	
9th	0.026	0.032	0.051	0.062	0.400	
10th	0.004	0.005	0.005	0.006	0.184	
11th	0.022	0.027	0.035	0.043	0.330	
12th	0.004	0.005	0.005	0.006	0.153	
13th	0.018	0.023	0.030	0.037	0.210	
14th	0.004	0.005	0.004	0.005	0.131	
15th	0.013	0.015	0.021	0.026	0.150	
16th	0.003	0.004	0.003	0.004	0.115	
17th	0.009	0.011	0.018	0.022	0.132	
18th	0.003	0.004	0.003	0.004	0.102	
19th	0.006	0.007	0.013	0.016	0.118	
20th	0.002	0.003	0.003	0.003	0.092	
21th	0.005	0.006	0.012	0.015	0.107	0.160
22th	0.002	0.003	0.003	0.003	0.084	
23th	0.004	0.005	0.010	0.012	0.098	0.147
24th	0.002	0.003	0.003	0.003	0.077	
25th	0.003	0.003	0.009	0.011	0.090	0.135
26th	0.002	0.003	0.002	0.003	0.071	
27th	0.002	0.002	0.007	0.009	0.083	0.124
28th	0.002	0.002	0.002	0.002	0.066	
29th	0.002	0.003	0.008	0.009	0.078	0.117
30th	0.002	0.002	0.002	0.002	0.061	
31th	0.002	0.003	0.006	0.008	0.073	0.109
32th	0.002	0.002	0.002	0.002	0.058	
33th	0.003	0.003	0.006	0.007	0.068	0.102
34th	0.002	0.002	0.002	0.002	0.054	
35th	0.003	0.003	0.006	0.007	0.064	0.096
36th	0.002	0.002	0.002	0.002	0.051	
37th	0.003	0.003	0.004	0.005	0.061	0.091
38th	0.002	0.002	0.002	0.002	0.048	
39th	0.003	0.004	0.005	0.006	0.058	0.087

love your energy

40th	0.001	0.002	0.001	0.002	0.046	
Note:						
The high	ner limits for a	dd harmonics 2	1 and above a	ire only allowa	able under certa	ain conditions, if
these hi	gher limits are	e utilised please	e state the exe	mption used a	as detailed in pa	rt 6.2.3.4 of BS EN
61000-3	3-2 in the box	below.				
N/A						

Power Qua 13.8.4.1 H		ent Emissions -	Generating Uı	nit tested to BS	EN 61000-3-	-12 P
Model PR5						
Generating	Unit rating per					
	At 45-55% o 2.51 kW	of rated output	kW	ed output 4.97		
Harmonic	Measured	Measured	Measured	Measured	Limit in BS E	N 61000-3-12 in %
	Value (MV)	Value (MV) in	Value (MV)	Value (MV) in	1-phase	3-phase
<u> </u>	in Amps	in %	in Amps	%	•	•
2nd	0.055	N/A N/A	0.454	N/A N/A	8% 21.6%	8% N/A
3rd 4th	0.419	N/A N/A	0.769	N/A N/A	4%	4%
-	0.012		-		-	
5th 6th	0.355	N/A	0.319	N/A	10.7%	10.7%
	0.013	N/A N/A	0.059	N/A N/A	2.67% 7.2%	2.67% 7.2%
7th	0.243		0.334			
8th	0.011	N/A N/A	0.039	N/A N/A	2% 3.8%	2% N/A
9th	0.170		0.272			
10th	0.013	N/A	0.030	N/A	1.6%	1.6%
11th	0.118	N/A	0.131	N/A	3.1%	3.1%
12th	0.011	N/A	0.024	N/A	1.33%	1.33%
13th	-	N/A	0.159	N/A	2%	2%
14th	0.011	N/A N/A	0.022	N/A N/A	N/A	N/A N/A
15th	0.068		0.129		N/A	
16th	0.010	N/A	0.019	N/A	N/A	N/A
17th	0.064	N/A	0.113	N/A	N/A	N/A
18th	0.011	N/A	0.021	N/A	N/A	N/A
19th	0.053	N/A	0.098	N/A	N/A	N/A
20th	0.010	N/A	0.020	N/A	N/A	N/A
21th	0.051	N/A	0.084	N/A	N/A	N/A
22th	0.010	N/A	0.021	N/A	N/A	N/A
23th	0.043	N/A	0.074	N/A	N/A	N/A
24th	0.010	N/A	0.023	N/A	N/A	N/A
25th	0.037	N/A	0.071	N/A	N/A	N/A
26th	0.009	N/A	0.024	N/A	N/A	N/A
27th	0.030	N/A	0.061	N/A	N/A	N/A
28th	0.010	N/A	0.025	N/A	N/A	N/A
29th	0.033	N/A	0.059	N/A	N/A	N/A
30th	0.009	N/A	0.025	N/A	N/A	N/A
31th	0.023	N/A	0.049	N/A	N/A	N/A
32th	0.008	N/A	0.024	N/A	N/A	N/A
33th	0.021	N/A	0.042	N/A	N/A	N/A
34th	0.008	N/A	0.022	N/A	N/A	N/A
35th	0.017	N/A	0.040	N/A	N/A	N/A
36th	0.009	N/A	0.020	N/A	N/A	N/A
37th	0.015	N/A	0.033	N/A	N/A	N/A
38th	0.011	N/A	0.019	N/A	N/A	N/A

love your energy

39th	0.015	N/A	0.030	N/A	N/A	N/A	
40th	0.008	N/A	0.017	N/A	N/A	N/A	
THD	1.29%	N/A	1.12%	N/A	23%	13%	
PWHD	0.13%	N/A	0.11%	N/A	23%	22%	

Starting d _{max}	dc			Stoppin	σ			. .	
d _{max}				Stoppin	a			•	
	dc				5			Running	5
0.27%			d _(t)	d_{max}	d _{c-}		d (t)	P _{st}	P _{lt} 2 hours
	2.6	8%	0.00%	0.27%	2.68	3%	0.00%	0.07	0.07
0.27%	2.6	8%	0.00%	0.27%	2.68	3%	0.00%	0.07	0.07
4%	3.3	%	3.3% 500ms	4%	3.39	%	3.3%	1.0	0.65
R				Ω			XL	0.15* 0.25**	Ω
R			-	Ω			XL	0.15* 0.25**	Ω
Starting				Stopping			Running		
d _{max}	dc		d _(t)	d _{max}	d _{c-}		d (t)	P _{st}	P _{lt} 2 hours
0.33%	3.3	0%	0.00%	0.33%	3.30	0%	0.00%	0.09	0.09
4%	3.3	%	3.3%	4%	3.39	%	3.3%	1.0	0.65
R			-	Ω			XL	0.15* 0.25**	Ω
	4% R R <u>Starting</u> d _{max} 0.33% 4%	0.27% 2.6 4% 3.3 R R Starting d _{max} d _c 0.33% 3.3 4% 3.3	0.27% 2.68% 4% 3.3% R R Starting d _{max} d _c 0.33% 3.30% 4% 3.3%	0.27% 2.68% 0.00% 4% 3.3% 3.3% 500ms 500ms R 0.24* 0.4*** 0.4*** R 0.24* 0.24* 0.4** 0.24* 0.4** 0.33% 3.3% 4% 3.3% 0.33% 3.30% 4% 3.3% 500ms	0.27% 2.68% 0.00% 0.27% 4% 3.3% 3.3% 4% 4% 3.3% 4% 500ms 4% 0.00% 0.27% R 0.24* 0.00% 0.00% R 0.24* 0.00% 0.00% R 0.24* 0.00% 0.00% Stoppin dmax dc d(t) dmax 0.33% 3.3% 3.3% 4% 4% 3.3% 3.3% 4%	Note Note	0.27% 2.68% 0.00% 0.27% 2.68% 4% 3.3% 3.3% 4% 3.3% 4% 3.3% 3.3% 4% 3.3% 4% 3.3% 3.3% 4% 3.3% 6 0.24* 0.4** 0.24* 0.24* R 0.24* 0.24* 0.2 0.24* R 0.24** 0.2 0.2 0.2 Starting Stopping dmax d_c d(t) dmax d_c- 0.33% 3.3% 0.00% 0.33% 3.3% 4% 3.3% 3.3% 4% 3.3% 4% 3.3% 3.3% 4% 3.3%	0.27% 2.68% 0.00% 0.27% 2.68% 0.00% 4% 3.3% 3.3% 4% 3.3% 3.3% 4% 3.3% 4% 3.3% 3.3% 500ms 4% 3.3% 3.3% 60.24* 0.4** 0.24* 1 Xl R 0.24* 0.24* 1 Xl R 0.24** 0.24* 1 Xl R 0.24* 0.24* 1 Xl R 0.24* 0.4** 1 Xl Starting V 3.3% 3.3% 3.3% 3.3% 0.33% 3.30% 0.00% 0.33% 3.30% 0.00% 4% 3.3% 3.3% 4% 3.3% 3.3% 500ms 500ms 500ms 500ms 500ms	0.27% 2.68% 0.00% 0.27% 2.68% 0.00% 0.07% 4% 3.3% 3.3% 4% 3.3% 3.3% 1.0 4% 3.3% 3.3% 4% 3.3% 3.3% 1.0 R 0.24^{*} Ω Xl 0.15^{*} R 0.24^{*} Ω Xl 0.15^{*} R 0.24^{*} Ω Xl 0.15^{*} R 0.24^{*} Ω Xl 0.25^{**} R 0.24^{*} Ω Xl 0.15^{*} 0.33% 3.3% 6.0% Nl 0.15^{*} d_{max} d_c $d_{(t)}$ d_{max} d_c $Running$ 4% 3.3% 3.3% 4% 3.3% 3.3% 1.0 $sooms$ $sooms$ $sooms$ $sooms$ $sooms$ $sooms$ $sooms$

Note:

* Applies to three phase and split single phase Generating Units

** Applies to single phase Generating Units and Generating Units using two phases on a three phase system For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the power factor of the generation output is 0,98 or above.

Normalised value = Measured value*reference source resistance/measured source resistance at test point. Single phase unit reference source resistance is 0.4Ω

Two phase units in a three phase system reference source resistance 0.4Ω

Two phase units in a split phase system reference source resistance is 0.24Ω

Three phase units reference source resistance is 0.24Ω

Where the power factor of the output is under 0.98 then the Xl to R ratio of the test impedance should be close to that of the Standard impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to comply with the particular requirements set out in the testing notes for the technology under test. Dates and location of the test need to be noted below.

love your energy

Power Quality. 13.8.4.4 DC injection.								
Model PR30S								
10%	55%	100%						
28.82mA	28.60mA	27.29mA						
0.22%	0.22%	0.21%						
0.25%	0.25%	0.25%						
10%	55%	100%						
1.24mA	13.96mA	8.71mA						
0.01%	0.06%	0.04%						
0.25%	0.25%	0.25%						
	10% 28.82mA 0.22% 0.25% 10% 1.24mA 0.01%	10% 55% 28.82mA 28.60mA 0.22% 0.22% 0.25% 0.25% 10% 55% 1.24mA 13.96mA 0.01% 0.06%	10% 55% 100% 28.82mA 28.60mA 27.29mA 0.22% 0.21% 0.21% 0.25% 0.25% 0.25% 10% 55% 100% 1.24mA 13.96mA 8.71mA 0.01% 0.06% 0.04%					

Note:

The tests should be carried out on a single Generating Unit. Test are to be carried out three power defined levels ± 5%. At 230V a 2kW single phase inverter has a current output of 8.7A so DC limit is 21.75mA, a 10 kW three phase inverter has a current output of 45.3A at 230V so DC limit is 108.75mA.

Power Quality. 13.8.4.2 Power factor.									
Model PR30S									
	216.2V	230V	253V	Measured at three voltage levels and	l at full				
Measured value	0.999	0.999	0.999	output. Voltage to be maintained within					
Limit	>0.95	>0.95	>0.95	±1.5% of the stated level during the	test.				
Model PR50S									
	216.2V	230V	253V	Measured at three voltage levels and	l at full				
Measured value	0.999	0.999	0.999	output. Voltage to be maintained withi					
Limit	>0.95	>0.95	>0.95	±1.5% of the stated level during the	test.				

Protection. 13.8.3.2 Over / Under Frequency										
Function	Setting	Setting			"No trip test"					
	Frequency	Time			Frequency /time	Confirm no trip				
		delay		delay						
U/F stage 1	47.5Hz	20s	47.51Hz	20.01s	47.7Hz / 25s	No trip.				
U/F stage 2	47Hz	0.5s	47.01Hz	0.515s	47.2Hz / 19.98s	No trip.				
					46.8Hz / 0.48s	No trip.				
O/F stage 1	51.5Hz	90s	51.49Hz	90.05s	51.3Hz / 95s	No trip.				
O/F stage 2	52Hz	0.5s	51.99Hz	0.508s	51.8Hz / 89.98s	No trip.				
					52.2Hz / 0.48s	No trip.				

Note:

The total disconnection time for voltage and frequency protection including the operating time of the disconnection device shall be the trip delay setting with a tolerance of, -0s + 0,5s.

For frequency trip tests the frequency required to trip is the setting ± 0.1 Hz. In order to measure the time delay, a larger deviation than the minimum required to operate the projection can be used. The "No-trip tests" need to be carried out at the setting ± 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

For voltage tests the voltage required to trip is the setting plus or minus 3.45V. The time delay can be measured at a larger deviation than the minimum required to operate the projection. The "No-trip tests" need to be carried out at the setting ±4V and for the relevant times shown in the table above to ensure that the protection will not trip in error.

love your energy

Protection. 13.8.3.4 L	oss of mains	protection, i	nverter conne	ected machin	es	Р		
BS EN 62116								
Model PR30S								
Disconnection limit		0.5 s*						
Test Power and	33%	66%	100%	33%	66%	100%		
imbalance	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P		
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10		
	464 mS	321 mS	657 mS	379 mS	303 mS	492 mS		
Model PR50S	-							
Disconnection limit		0.5 s*						
Test Power and	33%	66%	100%	33%	66%	100%		
imbalance	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P		
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10		
	336 mS	320 mS	737 mS	379 mS	320 mS	446 mS		
* Note for technologies		ubstantial shut			to the 0.5 sec			

establishing that the trip occurred in less than 0.5s. Maximum shut down time could therefore be up to 1.0 seconds for these technologies.

Protection. 13.8.3.6 Frequ	Р			
	Start Frequency	Change	End Frequency	Confirm no trip
Positive Vector Shift	49.5Hz	+9 degrees		No trip.
Negative Vector Shift	50.5Hz	- 9 degrees		No trip.
Positive Frequency drift	49.5Hz	+0.19Hz/sec	51.5Hz	No trip.
Negative Frequency drift	50.5Hz	-0.19Hz/sec	47.5Hz	No trip.

Note:

For the step change test the Generating Unit should be operated with a measureable output at the start frequency and then a vector shift should be applied by extending or reducing the time of a single cycle with subsequent cycles returning to the start frequency. The start frequency should then be maintained for a period of at least 10 seconds to complete the test. The Generating Unit should not trip during this test.

For frequency drift tests the Generating Unit should be operated with a measureable output at the start frequency and then the frequency changed in a ramp function at 0.19Hz per second to the end frequency. On reaching the end frequency it should be maintained for a period of at least 10 seconds. The Generating Unit should not trip during this test.

Protection. 13.8.3.5 Re-connection P						
Test should prove that the re	econnection sequer	nce starts after a m	inimum delay of 2	20 seconds for		
restoration of voltage and fr	equency to within t	the stage 1 setting	s of table 1.			
Voltage	Time delay settin	g	20s	20s		
	Measured delay		23.0s	23.0s		
Frequency	Time delay setting		20s	20s		
	Measured delay		23.1s	23.1s		
	Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of table 1.					
	At 266.2V	At 196.1V	At 47.4Hz	At 51.6Hz		
Confirmation that the Generation Unit does not re-connect.	No reconnection	No reconnection	No reconnection	No reconnection		
Note:		•		•		
Reference in accordance with B	S EN 50438 (2007)					

love your energy

Fault level contribution. 13.8.4.6 Sh	ort Circuit	Current Co	ntribution		Р	
Model PR30S						
For a directly coupled SSEG			For a Inverter SSEG			
Parameter	Symbol	Value	Time after fault	Volts	Amps	
Peak Short Circuit current	i _p	N/A	20ms	77.32	37.51	
Initial Value of aperiodic current	А	N/A	100ms	72.55	16.79	
Initial symmetrical short-circuit current*	I _k	N/A	250ms	71.73	10.63	
Decaying (aperiodic) component of short circuit current*	i _{DC}	N/A	500ms	71.47	7.53	
Reactance/Resistance Ratio of	X/R	N/A	Time to trip	0.018	In	
source*					seconds	
Model PR50S						
For a directly coupled SSEG			For a Inverter SSEG			
Parameter	Symbol	Value	Time after fault	Volts	Amps	
Peak Short Circuit current	i _p	N/A	20ms	83.19	37.61	
Initial Value of aperiodic current	A	N/A	100ms	73.31	16.83	
Initial symmetrical short-circuit current*	I _k	N/A	250ms	71.66	10.65	
Decaying (aperiodic) component of short circuit current*	i _{DC}	N/A	500ms	71.07	7.54	
Reactance/Resistance Ratio of source*	×/ _R	N/A	Time to trip	0.018	In seconds	

Not

The values of voltage and current should be recorded for a period of up to 1 second when the changeover switch should be returned to the normal position. The voltage and current at relevant times shall be recorded in the type test report including the time taken for the Inverter to trip.

13.8.4.7 Self-Monitoring solid – solid state disconnection		
The requirement is specified in section 5.3.1, No specified test requirements.		

N/A

It has been verified that in the event of the solid state switching device failing to disconnect the SSEG, the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 seconds.

Note:

Unit do not provide solid state switching relays. In case the semiconductor bridge is switched off, then the voltage on the output drops to 0. In this case the relays on the output will also open

Additional comments

None