Certificate G83/2.

SSEG manufacturer/supplier declaration

Manufacturer N.V. Nederlandsche Apparatenfabriek "Nedap"					
Address	Parallelweg 2, 7141 DC Groenlo, The Netherlands				
Test house details	Bureau Veritas Consumer Products Services Germany GmbH				
Test house address	Businesspark A96, 86842 Türkheim, Germany				

Product type reference	PR50S / PR50SB / PR50SBi	PR37S / PR37SB / PR37SBi	PR30S / PR30SB	
Max. AC power	5000W	3680W	3000W	
Nominal AC power	5000W	3680W	3000W	
Grid connection	Single phase	Single phase	Single phase	

I certify on behalf of the company named above as a manufacturer/supplier of Small Scale Embedded Generators, that all products manufactured/supplied by the company with the above SSEG Type reference number will be manufactured and tested to ensure that they perform as stated in this Type Verification Test Report, prior to shipment to site and that no site modifications are required to ensure that the product meets all the requirements of G83/2.

Test Summary (for details see attached test report)

Power Quality

- » Harmonic current emissions as per BS EN 61000-3-2
- » Voltage fluctuations and flicker as per BS EN 61000-3-3
- » DC injection
- » Power factor

Protection

- » Frequency test
- » Voltage test
- » Loss of mains test
- » Frequency change test, stability test

» Reconnection timer

Fault level contribution

Drawn up in	Groenlo, The Netherlands
Date	January 28 th , 2015
Name and position	W. Klunder, Managing Director Nedap Energy Systems

love your energy

G83/2 - Appendix 4 - Type Verification Test Report.

All tests were performed on model PR30S provided with software version 6.0.0. unless stated otherwise. Tests on models PR30S and PR50S were considered representative for all PowerRouter models as listed under "Product type reference"

Power Qua A or B 1.4.1		cs . The require	ment is speci	fied in section 5	i.4.1, test proc	edure in Annex	
Model PR3							
	g per phase (r	pp)	3	kW	NV=MV*3.68/rpp		
Harmonic		of rated output		ated output	1	FT	
	Measured	Normalised	Measured	Normalised	Limit in BS	Higher limit	
	Value (MV)	Value	Value	Value (NV) in	EN 61000-	for odd	
	in Amps	(NV) in Amps	(MV) in	Amps	3-2 in	harmonics 21	
		(,	Amps		Amps	and above	
2nd	0.049	0.060	0.050	0.061	1.080		
3rd	0.059	0.072	0.063	0.078	2.300		
4th	0.016	0.019	0.009	0.011	0.430		
5th	0.076	0.093	0.100	0.123	1.140		
óth	0.007	0.008	0.006	0.008	0.300		
7th	0.041	0.050	0.078	0.096	0.770		
Bth	0.004	0.005	0.005	0.006	0.230		
9th	0.026	0.032	0.051	0.062	0.400		
10th	0.004	0.005	0.005	0.006	0.184		
11th	0.022	0.027	0.035	0.043	0.330		
12th	0.004	0.005	0.005	0.006	0.153		
13th	0.018	0.023	0.030	0.037	0.210		
14th	0.004	0.005	0.004	0.005	0.131		
15th	0.013	0.015	0.021	0.026	0.150		
16th	0.003	0.004	0.003	0.004	0.115		
17th	0.009	0.011	0.018	0.022	0.132		
18th	0.003	0.004	0.003	0.004	0.102		
19th	0.006	0.007	0.013	0.016	0.118		
20th	0.002	0.003	0.003	0.003	0.092		
21th	0.005	0.006	0.012	0.015	0.107	0.160	
22th	0.002	0.003	0.003	0.003	0.084		
23th	0.004	0.005	0.010	0.012	0.098	0.147	
24th	0.002	0.003	0.003	0.003	0.077		
25th	0.003	0.003	0.009	0.011	0.090	0.135	
26th	0.002	0.003	0.002	0.003	0.071		
27th	0.002	0.002	0.007	0.009	0.083	0.124	
28th	0.002	0.002	0.002	0.002	0.066		
29th	0.002	0.003	0.008	0.009	0.078	0.117	
30th	0.002	0.002	0.002	0.002	0.061		
31th	0.002	0.003	0.006	0.008	0.073	0.109	
32th	0.002	0.002	0.002	0.002	0.058		
33th	0.003	0.003	0.006	0.007	0.068	0.102	
34th	0.002	0.002	0.002	0.002	0.054		
35th	0.003	0.003	0.006	0.007	0.064	0.096	
36th	0.002	0.002	0.002	0.002	0.051		
37th	0.003	0.003	0.004	0.005	0.061	0.091	
38th	0.002	0.002	0.002	0.002	0.048		
39th	0.003	0.004	0.005	0.006	0.058	0.087	
40th	0.001	0.002	0.001	0.002	0.046		

love your energy

Note:

The higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

N/A

A or B 1.4.1 Model PR5						
	g per phase(r	nn)	5	kW	NV=MV*3.68	/rpp
Harmonic	At 45-55%		100% of rat		100-000	//PP
	output		200,00110			
	Measured	Normalised	Measured	Normalised	Limit in BS	Higher limit
	Value	Value	Value (MV)	Value (NV)	EN 61000-	for odd
	(MV) in	(NV) in Amps	in Amps	in Amps	3-2 in Amps	harmonics 21
	Amps					and above
2	0.049	0.060	0.050	0.061	1.080	
3	0.059	0.072	0.063	0.078	2.300	
4	0.016	0.019	0.009	0.011	0.430	
5	0.076	0.093	0.100	0.123	1.140	
6	0.007	0.008	0.006	0.008	0.300	
7	0.041	0.050	0.078	0.096	0.770	
8	0.004	0.005	0.005	0.006	0.230	
9	0.026	0.032	0.051	0.062	0.400	
10	0.004	0.005	0.005	0.006	0.184	
11	0.022	0.027	0.035	0.043	0.330	
12	0.004	0.005	0.005	0.006	0.153	
13	0.018	0.023	0.030	0.037	0.210	
14	0.004	0.005	0.004	0.005	0.131	
15	0.013	0.015	0.021	0.026	0.150	
16	0.003	0.004	0.003	0.004	0.115	
17	0.009	0.011	0.018	0.022	0.132	
18	0.003	0.004	0.003	0.004	0.102	
19	0.006	0.007	0.013	0.016	0.118	
20	0.002	0.003	0.003	0.003	0.092	
21	0.005	0.006	0.012	0.015	0.107	0.160
22	0.002	0.003	0.003	0.003	0.084	
23	0.004	0.005	0.010	0.012	0.098	0.147
24	0.002	0.003	0.003	0.003	0.077	
25	0.003	0.003	0.009	0.011	0.090	0.135
26	0.002	0.003	0.002	0.003	0.071	
27	0.002	0.002	0.007	0.009	0.083	0.124
28	0.002	0.002	0.002	0.002	0.066	
29	0.002	0.003	0.008	0.009	0.078	0.117
30	0.002	0.002	0.002	0.002	0.061	
31	0.002	0.003	0.006	0.008	0.073	0.109
32	0.002	0.002	0.002	0.002	0.058	
33	0.003	0.003	0.006	0.007	0.068	0.102
34	0.002	0.002	0.002	0.002	0.054	
35	0.003	0.003	0.006	0.007	0.064	0.096
36	0.002	0.002	0.002	0.002	0.051	
37	0.003	0.003	0.004	0.005	0.061	0.091

love your energy

Note:										
40	0.001	0.002	0.001	0.002	0.046					
39	0.003	0.004	0.005	0.006	0.058	0.087				
38	0.002	0.002	0.002	0.002	0.048					

The higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

N.A.

Power Quality. Voltage fluctuations and Flicker. The requirement is specified in section 5.4.2, test procedure in Annex A or B 1.4.3

Model PR30S								
	Starting	Starting		Stopping			Running	
	d _{max}	dc	d _(t)	d _{max}	d _{c-}	d (t)	P _{st}	P _{lt} 2
								hours
Measured Values	0.27%	2.68%	0.00%	0.27%	2.68%	0.00%	0.07	0.07
Normalised to standard impedance and 3.68kW for multiple units	0.33%	3.28%	0.00%	0.33%	3.28%	0.00%	0.09	0.09
Limits set under BS EN	4%	3.3%	3.3%	4%	3.3%	3.3%	1.0	0.65
61000-3-2			500ms			500ms		

Power Quality. Voltage f procedure in Annex A or I		ns and Fli	cker . The	requirem	ent is :	spe	cified in s	ection	5.4.2, test	
Model PR50S										
	Starting Stopping Running									
	d_{max}	dc	d(t)	d_{max}	d _{c-}		d (t)	P_{st}	P _{lt} 2 hours	
Measured Values	0.33%	3.30%	0.00%	0.33%	3.30	%	0.00%	0.09	0.09	
Normalised to standard impedance and 3.68kW for multiple units	N/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A	
Limits set under BS EN 61000-3-2	4%	3.3%	3.3% 500ms	4%	3.3%	Ď	3.3%	1.0	0.65	
Test start date	2014-0	5-27	Test end	l date		20	14-06-03	5		
Test location	See test	See test house details								

love your energy

Power quality. DC injection	. The requirement	nt is specified in se	ection 5.5, test proc	edure in Annex A
or B 1.4.4				
Model PR30S				
Test power level	10%	55%	100%	
Recorded value	28.82mA	28.60mA	27.29mA	
as % of rated AC current	0.22%	0.22%	0.21%	
Limit	0.25%	0.25%	0.25%	
Model PR50S				
Test power level	10%	55%	100%	
Recorded value	1.24mA	13.96mA	8.71mA	
as % of rated AC current	0.01%	0.06%	0.04%	
Limit	0.25%	0.25%	0.25%	

Power Quality. Power factor. The requirement is specified in section 5.6, test procedure in Annex A or B 1.4.2

Model PR30S				
	216.2V	230V	253V	Measured at three voltage levels and at full
Measured value	0.999	0.999	0.999	output. Voltage to be maintained within
Limit	>0.95	>0.95	>0.95	±1.5% of the stated level during the test.
Model PR50S				
	216.2V	230V	253V	Measured at three voltage levels and at full
Measured value	0.999	0.999	0.999	output. Voltage to be maintained within
Limit	>0.95	>0.95	>0.95	±1.5% of the stated level during the test.

Protection. Find A or B 1.3.3	requency test	s The req	uirement is sp	ecified in s	section 5.3.1, test pro	ocedure in Annex
Function	Setting		Trip test		"No trip tests"	
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip
U/F stage 1	47.5Hz	20s	47.51Hz	20.015	47.7Hz 25s	No trip.
U/F stage 2	47Hz	0.5s	47.01Hz	0.515s	47.2Hz 19.98s	No trip.
					46.8Hz 0.48s	No trip.
O/F stage 1	51.5Hz	90s	51.49Hz	90.05s	51.3Hz 95s	No trip.
O/F stage 2	52Hz	0.5s	51.99Hz	0.508s	51.8Hz 89.98s	No trip.
					52.2Hz 0.48s	No trip.

love your energy

Protection. Vo	ltage tests T	he require	ement is spec	ified in secti	on 5.3.1, test proce	edure in Annex A
or B 1.3.2	-				·	
Function	Setting		Trip test		"No trip tests"	
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V stage 1	200.1V	2.5s	202.0V	2.514s	204.1V 3.5s	No trip.
U/V stage 2	184V	0.5s	186.0V	0.504s	188V 2.48s	No trip.
					180V 0.48s	No trip.
O/V stage 1	262.2V	1.0s	260.0V	1.01s	258.2V 2.0s	No trip.
O/V stage 2	273.7V	0.5s	272.4V	0.503s	269.7V 0.98s	No trip.
					277.7V 0.48s	No trip.

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

love your energy

To be carried out at	three output	power levels	with a tolera	nce of plus or	minus 5% ir	n Test Power
levels. Test Power	10%	55%	100%	10%	55%	100%
Balancing load on	95% of	95% of	95% of	105% of	105% of	105% of
islanded network	SSEG	SSEG	SSEG	SSEG	SSEG	SSEG output
	output	output	output	output	output	
Trip time. Limit is	N.A	N.A	N.A	N.A	N.A	N.A
0.5 seconds						
For Multi-phase SSE	G s confirm th	hat the device	shuts down c	orrectly after	the removal	of a single fus
as well as operation						
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on	95% of	95% of	95% of	105% of	105% of	105% of
islanded network	SSEG	SSEG	SSEG	SSEG	SSEG	SSEG output
	output	output	output	output	output	
Trip time. Ph1	N.A	N.A	N.A	N.A	N.A	N.A
fuse removed						
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on	95% of	95% of	95% of	105% of	105% of	105% of
islanded network	SSEG	SSEG	SSEG	SSEG	SSEG	SSEG output
	output	output	output	output	output	_
Trip time. Ph2	N.A	N.A	N.A	N.A	N.A	N.A
fuse removed						
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on	95% of	95% of	95% of	105% of	105% of	105% of
islanded network	SSEG	SSEG	SSEG	SSEG	SSEG	SSEG output
	output	output	output	output	output	
Trip time. Ph3	N.A	N.A	N.A	N.A	N.A	N.A
fuse removed						
Note for technologi						
in establishing that			an 0.5s. Maxir	num shut dow	n time could	therefore be
up to 1.0 seconds fo Indicate additional						
					-ms wing sub set	of tosts should
Note as an alternati be recorded in the f			LO DO EN 021.	Lo. The follo	wing sub set	or tests should
Model PR30S		.e.				
Test Power and	33%	66%	100%	33%	66%	100%
imbalance	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
inibatanee	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip time. Limit is	464ms	321ms	657ms	379ms	303ms	492ms
0.5s*		-				
Model PR50S						
Test Power and	33%	66%	100%	33%	66%	100%
imbalance	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
		320ms	737ms	379ms	320ms	446ms
Trip time. Limit is 0.5s*	336ms	5201115	/ 5/115	57 5115	520115	4401115

up to 1.0 seconds for these technologies.

love your energy

Protection. Frequency change, Stability test The requirement is specified in section 5.3.3, test							
procedure in Annex A or B 1.3.6							
		CI		C C ()			

	Start Frequency	Change	End Frequency	Confirm no trip
Positive Vector Shift	49.5Hz	+9 degrees		No trip.
Negative Vector Shift	50.5Hz	- 9 degrees		No trip.
Positive Frequency drift	49.5Hz	+0.19Hz/sec	51.5Hz	No trip.
Negative Frequency drift	50.5Hz	-0.19Hz/sec	47.5Hz	No trip.

Protection. Re-connection timer. The requirement is specified in section 5.3.4, test procedure in Annex A or B 1.3.5

Test should prove that the reconnection sequence starts after a minimum delay of 20 seconds for restoration of voltage and frequency to within the stage 1 settings of table 1.

Time delay	Measured	Checks on no reconnection when voltage or frequency is brought to					
setting	delay	just outside stage 1 limits of table 1.					
		At 266.2V	At 51.6Hz				
Confirmation that the SSEG		No reconnection	No reconnection	No reconnection	No reconnection		
does not re-connect.							

Fault level contribution. The requirement is specified in section 5.7, test procedure in Annex A or B 1.4.6

Model PR30S					
For a directly coupled SSEG			For a Inverter SSEG		
Parameter	Symbol	Value	Time after fault	Volts	Amps
Peak Short Circuit current	i _p	N/A	20ms	77.32	37.51
Initial Value of aperiodic current	Α	N/A	100ms	72.55	16.79
Initial symmetrical short-circuit current*	I _k	N/A	250ms	71.73	10.63
Decaying (aperiodic) component of short circuit current*	i _{DC}	N/A	500ms	71.47	7.53
Reactance/Resistance Ratio of source*	×/ _R	N/A	Time to trip	0.018	In seconds

Model PR50S					
For a directly coupled SSEG			For a Inverter SSEG		
Parameter	Symbol	Value	Time after fault	Volts	Amps
Peak Short Circuit current	i _p	N/A	20ms	83.19	37.61
Initial Value of aperiodic current	A	N/A	100ms	73.31	16.83
Initial symmetrical short-circuit current*	I _k	N/A	250ms	71.66	10.65
Decaying (aperiodic) component of short circuit current*	i _{DC}	N/A	500ms	71.07	7.54
Reactance/Resistance Ratio of source*	×/ _R	N/A	Time to trip	0.018	In seconds
Note:	•	•	•	•	•

The values of voltage and current should be recorded for a period of up to 1 second when the changeover switch should be returned to the normal position. The voltage and current at relevant times shall be recorded in the type test report including the time taken for the Inverter to trip.

love your energy

Self-Monitoring solid state switching The requirement is specified in section 5.3.1, No specified test requirements.	Yes/or NA
It has been verified that in the event of the solid state switching device failing to disconnect the SSEG, the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 seconds.	N/A

Additional comments	
V/A	